Variational integrators for constrained dynamical systems
نویسندگان
چکیده
A variational formulation of constrained dynamics is presented in the continuous and in the discrete setting. The existing theory on variational integration of constrained problems is extended by aspects on the initialization of simulations, the discrete Legendre transform and certain postprocessing steps. Furthermore, the discrete null space method which has been introduced in the framework of energy-momentum conserving integration of constrained systems is adapted to the framework of variational integrators. It eliminates the constraint forces (including the Lagrange multipliers) from the timestepping scheme and subsequently reduces its dimension to the minimal possible number. While retaining the structure preserving properties of the specific integrator, the solution of the smaller dimensional system saves computational costs and does not suffer from conditioning problems. The performance of the variational discrete null space method is illustrated by numerical examples dealing with mass point systems, a closed kinematic chain of rigid bodies and flexible multibody dynamics and the solutions are compared to those obtained by an energy-momentum scheme.
منابع مشابه
PROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS
We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...
متن کاملStochastic Variational Partitioned Runge-Kutta Integrators for Constrained Systems
Stochastic variational integrators for constrained, stochastic mechanical systems are developed in this paper. The main results of the paper are twofold: an equivalence is established between a stochastic Hamilton-Pontryagin (HP) principle in generalized coordinates and constrained coordinates via Lagrange multipliers, and variational partitioned Runge-Kutta (VPRK) integrators are extended to t...
متن کاملVariational Integrators for Hamiltonizable Nonholonomic Systems
We report on new applications of the Poincaré and Sundman timetransformations to the simulation of nonholonomic systems. These transformations are here applied to nonholonomic mechanical systems known to be Hamiltonizable (briefly, nonholonomic systems whose constrained mechanics are Hamiltonian after a suitable time reparameterization). We show how such an application permits the usage of vari...
متن کاملVariational Integrators for Maxwell’s Equations with Sources
In recent years, two important techniques for geometric numerical discretization have been developed. In computational electromagnetics, spatial discretization has been improved by the use of mixed finite elements and discrete differential forms. Simultaneously, the dynamical systems and mechanics communities have developed structure-preserving time integrators, notably variational integrators ...
متن کاملVariational Integrators for Underactuated Mechanical Control Systems with Symmetries
Optimal control problems for underactuated mechanical systems can be seen as a higher-order variational problem subject to higher-order constraints (that is, when the Lagrangian function and the constraints depend on higher-order derivatives such as the acceleration, jerk or jounces). In this paper we discuss the variational formalism for the class of underactuated mechanical control systems wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007